WP4: Pilot implementations for testing and demonstrating services

RI-URBANS

Research Infrastructures Services Reinforcing Air Quality Monitoring Capacities in European Urban & Industrial AreaS

Tuukka Petäjä and Teresa Moreno UHEL and IDAEA-CSIC

RI-URBANS (101036245) 8/9/2025

Athens, Barcelona, Birmingham, Bucharest, Helsinki, Milano, Paris, Rotterdam, Zurich

WP4 will implement 5 pilots for testing and demonstrating services:

- the **NRT aerosol** source apportionment of carbonaceous aerosols (T4.1) and **NRT nanoparticle**-PNSD data (T4.2)
- the urban fine scale mapping including innovative modelling, monitoring, and crowdsourcing (T4.3) with novel health indicators of nanoparticles and PM components and source contributions (T4.4)
- The emission sources will be quantified in/near urban areas (with intense traffic and/or industries) identifying contribution of hotspots to air pollutant exposure (T4.5).

The synthesis of outcomes of pilot studies will be done (T4.6).

Milestone M28 (M4.12) Pilot studies finished in 9 cities

Table 1. RI-URBANS pilots and participating cities. X indicates planned pilot contribution and F indicates a follower-activity.

Pilot - Task City	АТН	BCN	BIRM	BUC	HEL	MIL	PAR	ROT	ZUR
P1 - T4.1 - NRT aerosols	x	F		F	x	x	x		X
P2 - T4.2 - NRT nanoparticles		x	x		X + F				F
P3 - T4.3 - Urban fine scale mapping	X		x	x	F		X	x	
P4 - T4.4 - Novel health indicators	x	X					F		x
P5 - T4.5 - Pollution hotspots				x	F	x		x	

WP 4 Deliverables and Milestones (all done)

D24 (D4.3): Summary: source apportionment pilots, sustainability and associated benefits (31 January, 2025)

D26 (D4.5): <u>Summary: nanoparticle aerosol pilots, sustainab., assoc. benefits for AQMNs and AQ policy</u> (17 January, 2025)

D28 (D4.7): Summary: Mapping procedures, sustainability and applicability for upscaling (16 January, 2025)

D29 (D4.6): Summary: health effects of novel AQ metrics, source contributions: epidemiology (28 February, 2025)

D30 (D4.9): Summary: OP of PM, PM components and PM source contributions (17 January, 2025)

D31 (D4.10): Summary: novel health effect indicator pilots, sustainability, associated benefits (28 July, 2025)

D33 (D4.12): <u>Summary of AQ hotspot pilots, sustainability and associated benefits</u> (4 April, 2025)

D34 (D4.13) Synthesis of RI-URBANS pilot actions, sustainability and importance on upscaling (28 May, 2025)

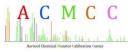
M24 (M4.8): Analysis of novel AQ metrics and source contributions (19 September, 2024)

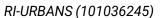
Near real-time source apportionment of carbonaceous aerosols in 13 sites across Europe

Hilkka Timonen¹, Jean-Eudes Petit², and the RI-URBAN NRT-SA pilot sites*

¹ Atmospheric composition Research, Finnish Meteorological Institute, Finland (hilkka.timonen@fmi.fi)

² Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France (jean-eudes.petit@lsce.ipsl.fr)





Summary of Pilot Phase: BC Source Apportionment

Results

- NRT-SA of BC is feasible, and best to be performed centrally
- Special care to keep in mind regarding
 - SA parameters (Savadkoohi et al., 2025)
 - Number and type of BC sources

Finalization of ACTRIS level3 products planned within ACTRIS-NEXT

Summary of Pilot Phase: OA Source Apportionment

Results

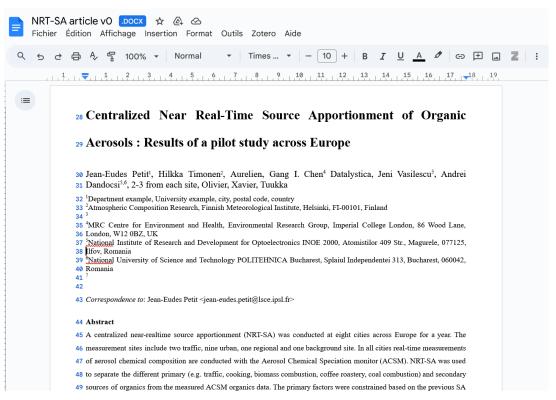
- NRT-SA of OA is feasible, even centrally
- Requires monitoring, and regular checks
- Identification of benefits and limitations of NRT-SA of OA
- List of recommendations

Summary of Pilot Phase: OA Source Apportionment

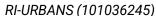
Future tasks

- Ensuring Reliability and Trustworthiness
- Traceability, Data Documentation and standardization Across Monitoring Sites
- Expanding SA Beyond Organic Aerosols (OA) and multi-instrument approach
- Fairness and Open-Source Access

Developing framework for OA data submission within ACTRIS-NEXT



Summary of Pilot Phase: OA Source Apportionment


Future tasks

Paper to be submitted by the end of 2025

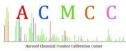
Near real-time aerosol number concentrations and number size distributions in 3 cities in Europe

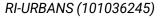
David Beddows¹ and Katrianne Lehtipalo^{2,3}

¹ University of Birmingham, UK (d.c.beddows@bham.ac.uk)

²University of Helsinki, Finland (katrianne.lehtipalo@helsinki.fi)

³Finnish Meteorological Institute, Finland



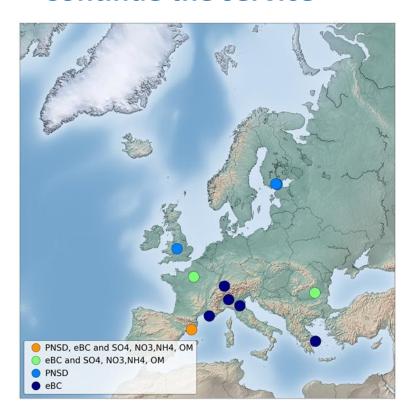


In Helsinki, the MPSS measurements at Kumpula site (urban background) continue indefinitely. At Mäkelänkatu (street canyon) the measurements continued until end of 2024 and from beginning of 2025 they were moved to a nearby location "Teollisuuskatu". Both send NRT data, available at: https://ebas-nrt.nilu.no/

In Birmingham, the MPSS measurements at BAQS (urban background) continue indefinitely. We have also implemented a script-based method of reading total concentration from our CEN-CPC3750. In addition, we have been working on a source apportionment method which depends on long term data series (at least 10years), Wide-Positive Matrix

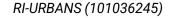
Factorisation of particle number size distributions: A new approach accounting for cyclically changing source profiles – ScienceDirect

In Barcelona, the MPSS measurements at Palau Reial (urban background) continue indefinitely


Status NRT (9 cities -12 sites)

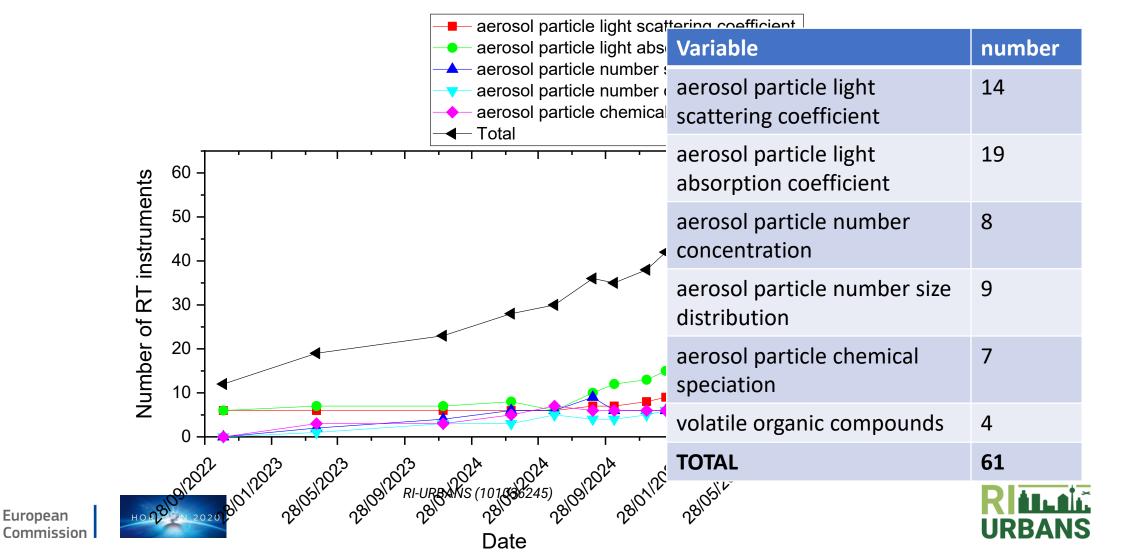
Fulfilled the obligations of 1 year pilot NRT from 9 pilot cities

Continue the service


Pilots	Code	Site	Instrument	Start	Stop
Zürich	CH0010U	Zürich-Kaserne	AE33	Jan-23	ongoing
	CH0010U		CPC	Jun-24	ongoing
Barcelona	ES0019U	Barcelona (Palau Reial)	AE33	Mar-23	ongoing
	ES0019U		ACSM	Mar-23	Nov-23
	ES0019U		SMPS	Nov-23	ongoing
Helsinki	FI0038U	Kumpula (SMEAR III)	DMPS	Aug-23	ongoing
	FI0039U	Mäkelänkatu	DMPS	Aug-23	ongoing
	FI0040R	Luukki	DMPS	Aug-23	ongoing
Paris	FR0020R	SIRTA	AE33	Feb-23	Jul-24
	FR0020R		ACSM	Feb-23	ongoing
Marseille	FR0035U	Marseille Longchamp	AE33	Mar-23	ongoing
Birmingham	GB0101U	Air Quality Site (BAQS)	DMPS	Nov-23	ongoing
Athens	GR0100B	DEM_Athens	AE33	Nov-23	ongoing
Po Valley	IT0022C	ISAC Bologna II	AE33	Dec-22	ongoing
	IT0025U	Milano Pascal	AE33	Jan-23	Mar-23
Bucharest	RO0010R	RADO-Bucharest II	ACSM	Mar-23	ongoing
	RO0010R		AE33	Jan-23	ongoing

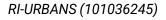
	Pilot – Task European City	ATH	BCN	BIRM	BUC	HEL	MIL	PAR	ROT	ZUR
	P1 - T4.1 - NRT aerosols	X				x	X	X		x
:	P2 - T4.2 - NRT nanoparticles		x	X		X				

WP4:



Number of Instruments Online

Karine Sartelet and Gerard Hoek



T4.3. Urban mapping

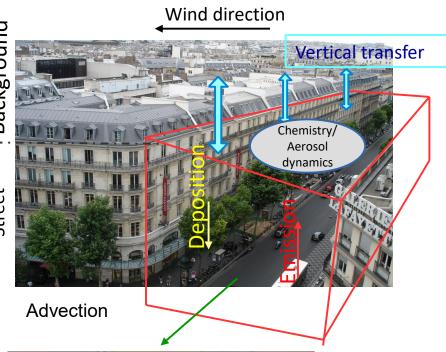
K. Sartelet, G. Hoek

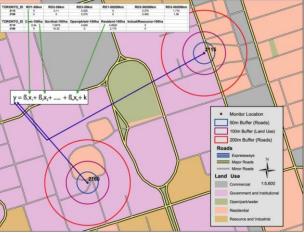
- Resolution of ten/hundred meters
- Mapping with deterministic modelling
- 3D Eulerian model (CTM) with sub-grid Eulerian dispersion and chemistry/aerosol dynamic at all scales

3-D Eulerian model (CTM) with sub-grid Gaussian dispersion)

Urban background observations coupled to Gaussian-based model

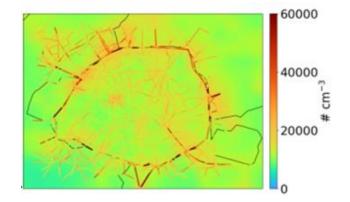
$$=> NO_2$$
, PM_{2.5} and PN


- Mapping with mobile measurements
 - Land-Use Regression based models


$$=> NO_2$$
, PM_{2.5} BC and PN

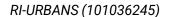
RI-URBANS (101036245)



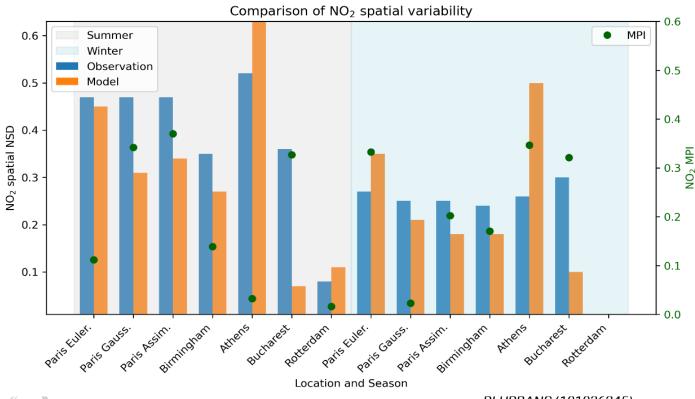

Accomplishment

- Measurement campaigns in each pilot city
 - Rotterdam (cars, cyclists)
 - Birmingham (pedestrian, cyclists)
 - Paris (fixed measurements+climatology)
 - Bucharest (cars)
- Set-up mapping methodologies and maps
 - Deterministic modelling (Paris, Birmingham, Athens)
 - LUR approach (Rotterdam, Birmingham and Bucharest)

Rotterdam – UFP in winter (maps from mobile measurements)

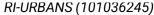


Paris – UFP in winter (maps from deterministic modelling)



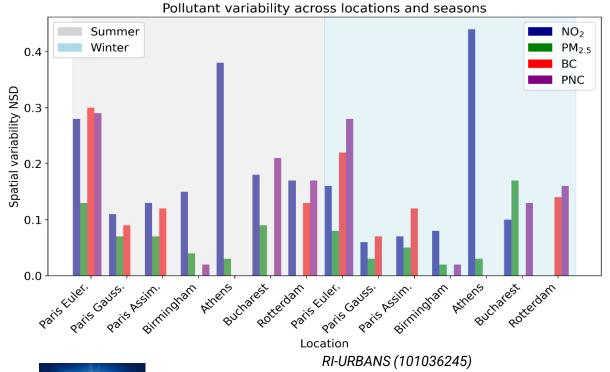
Accomplishment

- Compare simulated concentrations with fixed measurement stations (see ST)
- Compare simulated spatial and temporal variability using fixed measurements



The model performance indicator MPI quantifies the differences between model and measurements.

Should be lower than 1.



Accomplishment

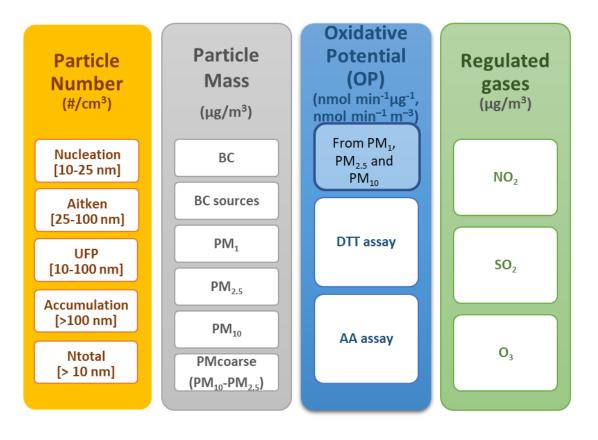
- Compare variability of pollutants using the same methodology for all methodologies and cities
- => High variability of UFP higher or similar to NO₂

Further work

- Extend the mapping to other domains/cities and for longer time periods
- Use the mapped concentrations for epidemiological studies
- Define more advanced health indicators from chemical and size distribution of particles

Task 4.4. Novel health indicators of nanoparticles and PM components and source contributions — PILOTS

Vanessa Nogueira, Ioar Rivas, Xavier Basagaña



Task 2.1: Study the short-term associations between novel pollutants and mortality

Harmonized AQ timeseries [2021 – 2023] (except Zurich: 2018-2019)

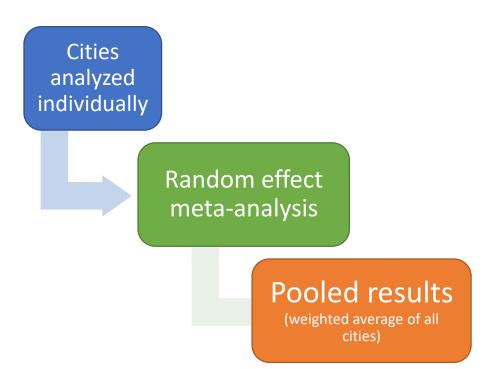
+ many other pollutants (e.g. sources of UFP, sources of BC, sources of OP)

Time series – data available

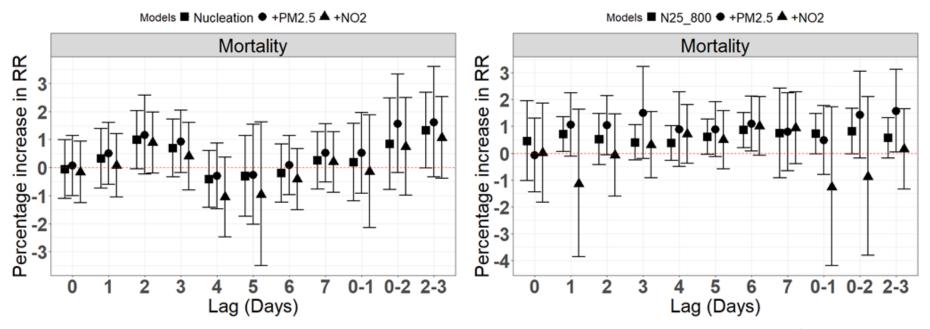
Harmonized AQ timeseries

Variables	Athens	Barcelona	Paris2	Zurich_2018	Zurich_2021
	(Thissio)	(Palau Reial)	(Les Halles)	(Kaserne)	(Kaserne)
PNSD	01.2021 – 12.2023	01.2021 – 12.2023	01.2021 – 12.2023	01.2018 – 07.2018	-
PM2.5, PM10	01.2021 –	01.2021 –	01.2021 –	01.2018 –	01.2021 –
and PMcoarse	12.2023	12.2023	12.2023	12.2019	12.2022
eBC and eBC	01.2021 –	01.2021 –	01.2021 –	01.2018 -	01.2021 –
sources	12.2023	12.2023	12.2023	12.2019	12.2022
PM2.5 OP and	06.2022 –	03.2022 -	04.2022 –	06.2018 –	-
PM10 OP	06.2023	12.2023	09.2023	05.2019	

1

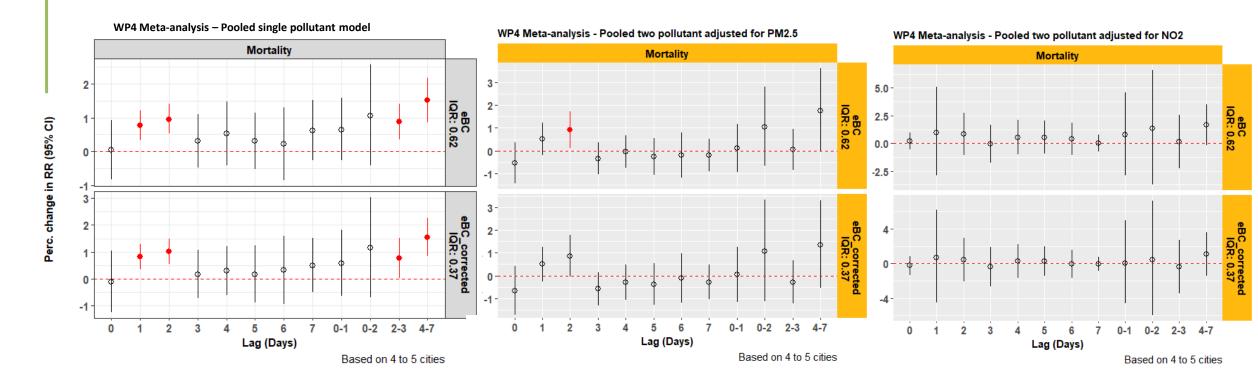

Methodology

Models used for the time series analysis:


Single and **two-pollutant** GNM quasi-Poisson regression models, adjusted for:

- Seasonality (time-stratified case-crossover)
- Temperature (a spline for cold and a spline for hot temperatures)
- Relative humidity (natural spline with 3 df)
- Bank holidays
- Day of the week

Random effect meta-analysis



UFP: Nucleation mode

Variable	Single pollutant model	Model adjusted for	Model adjusted for	Model adjusted for
	•	PM _{2.5}	PM ₁₀	NO ₂
UFP-PNSD				
Nucleation				
Aitken	1, 6	7		
UFP	1	2-3, 4-7		
Accumulation	5, 6, <mark>4-7</mark>	2, 3, 0-2, 2-3, <mark>4-7</mark>		
N25_800	1, <mark>6</mark> , <mark>4-7</mark>	<mark>6</mark> , 2-3, <mark>4-7</mark>		
Ntotal	1, 6	2, 2-3, 4-7		
PNSD sources				
Photonucleation		0-2		4, 2-3
Traffic 1				
Traffic 2				
Mixed traffic	0, 4-7			0, 0-2
Regional 1		0-1		
Regional 2	0, 2, 0-2, 2-3	0, 2, 0-2, 2-3		<mark>0, 2,</mark> 0-1, <mark>0-2, 2-3</mark>
Domestic heating		3		


eBC

Variable	Single pollutant model	Model adjusted for PM _{2.5}	Model adjusted for PM ₁₀	Model adjusted for NO ₂
eBC and eBC sources				
eBC	1, <mark>2</mark> , 2-3, 4-7	<mark>2</mark>		
eBC_corrected	1, 2, 2-3, 4-7	_		
eBCT	2, 0-2, 4-7			
eBCRC	<mark>1, 2</mark> , 0-2, 2-3, <mark>4-7</mark>	<mark>1, 2</mark>		5, 0-1, <mark>4-7</mark>

1

OP Meta-analysis

Variable	Single pollutant model	Model adjusted for	Model adjusted for	Model adjusted for
variable	Single pollutant model	PM _{2.5}	PM ₁₀	NO ₂
ОР				
OP AA μg PM _{2.5}				
OP AA m3 PM _{2.5}				
OP DTT μg PM2.5				
OP DTT m3 PM2.5		5		1
OP AA μg PM10				
OP AA m3 PM10				
OP DTT μg PM10	4, 5		4, 5	<mark>4, 5</mark>
OP DTT m3 PM10			4, 5	

1

Summary

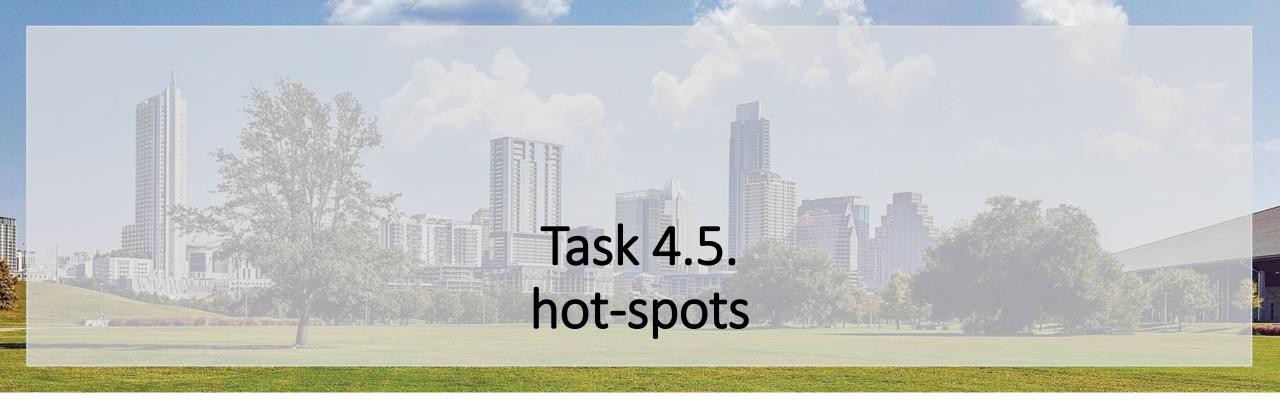
- UFP: We found associations for all the fractions except for nucleation. Results were more consistent for the coarser part of UFP (Aitken + Accumulation) and for lag between 4 and 7. When adjusting for NO₂, all associations were lost.
- eBC: we found associations at different lags covering the period 1 to 7.
- **OP**: We did not find associations, with the exception of some unexpected protective effect.
- In many cases, the association was lost when adjusting for a second pollutant.
- Need for long-time AQ time series with a completely harmonized data collection protocol.

Acknowledgements

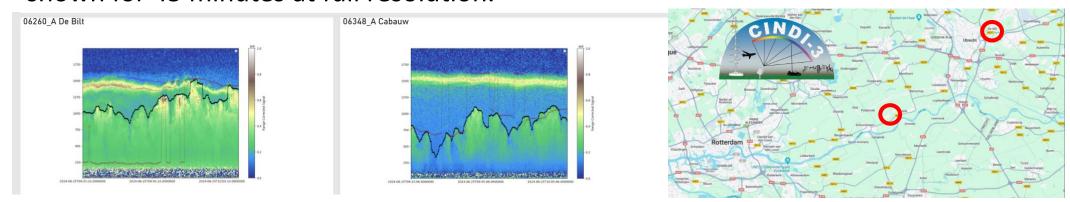
We would like to thank WP1 researchers for their efforts in compilating the air pollution datasets.

A special thanks go to **Anouk Marsal, Antonis Analitis, and Evi Samoli** for their help in running some of the analyses.

We would like to acknowledge the EARLY-ADAPT project (funded by the European Research Council under the European Union's Horizon 2020 research and innovation programme; grant agreement No. 865564) and its research team, and the statistics centers below for providing mortality data for this study.

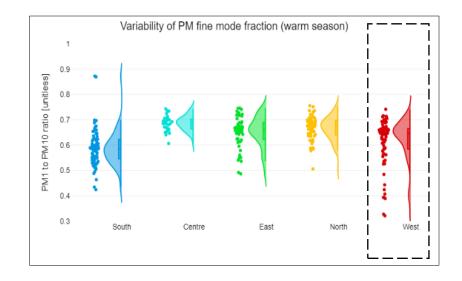

- Barcelona, Madrid and Granada: Spanish Statistical Office (INE)
- Athens: Hellenic Statistical Authority (ELSTAT)
- Zurich: Swiss Federal Statistical Office (BFS)
- Paris: Center for Epidemiology on Medical Causes of Death (Inserm)
- Air quality data from Paris was provided by the air quality observatory in Île-de-France (Airparif)

Arnoud Apituley, Jeni Vasilescu, Doina Nicolae, Angela Marinoni

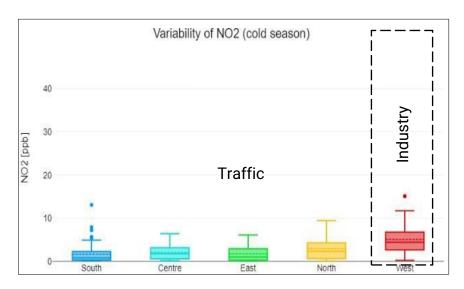


Rotterdam outcome: NRT implementation of AI/ML MLH detection algorithm

- Based on the experience with the RI-Urbans hot-spot pilots (T4.5) KNMI is upscaling and implementing the Deep Pathfinder (Wijnands et al, 2024) algorithm, in near real time for a representative number of ceilometers in the Dutch network.
- MLH estimates shall be available every 15 minutes with 12 second time resolution
- Example of NRT retrievals of MLH for two locations in Cabauw and De Bilt. Examples are shown for 45 minutes at full resolution.

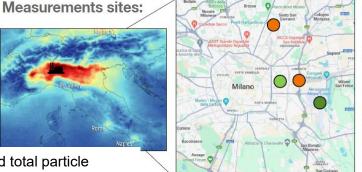

Wijnands, J., Apituley, A., Gouveia, D. A., Noteboom, J. W., Yan, M., de Haij, M., and Trani, L.: Deep-Pathfinder: Near-real-time detection of mixing layer height based on lidar remote sensing data and deep learning, EMS Annual Meeting 2025, Ljubljana, Slovenia, 7–12 Sep 2025, EMS2025-700, https://doi.org/10.5194/ems2025-700, 2025.

RI-URBANS (101036245)



Bucharest

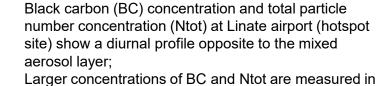
- impact of a thermal power plant site on air quality in Bucharest, Romania
- emphasizes the importance of accurate air pollutant inmission measurements in urban areas and demonstrate the integration of :
 - mobile measurements with low-cost sensors and modelling (LUR mixed effect),
 - Copernicus' Atmosphere Monitoring Service (CAMS) and
 - Copernicus Land Monitoring Service (CLMS), and
 - satellite retrieval to better understand climate change drivers and their potential impact on near- surface concentrations and column densities of NO2, CO, and PM.
- ➤ the limits of typical mesoscale air quality models in effectively capturing pollution dispersion and distribution using LUR (Land Use Regressions) retrievals
- ➤ the placement of a power plant may affect air quality in the nearby residential areas
- > CET West power plant does not have a significant impact on the air quality in the surrounding residential areas
- the sole pollutant that can be attributed to the power plantas a source is NO2, mostly during the winter season


Agriculture, constructions + traffic & industry

Traffic & heating

Nicolae et al. How Does the Location of PowerPlants In Lat. All Quality in the UrbanArea of Bucharest? Atmosphere BANS 16,636. https://doi.org/10.3390/atmos16060636

Milano

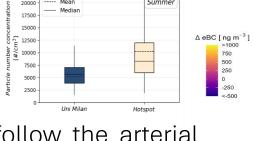

Aerosol vertical profiles

Aerosol physics
Aerosol chemistry
Gas

Aerosol physics

Gas

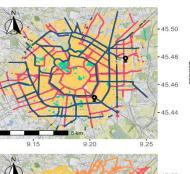
Ref Ref Airpor Near Site 2 t Spond 1.0 0.5 0.5 0.0 Ref site 1 site 2 t road Ref Site 1 site 2 t road Ref Site 1 site 2 t road Ref Site 2 t road



- Larger concentrations of BC and Ntot are measured in summer than in winter;
- Consistently larger concentrations of BC are measured at the airport and in the near road observation (from mobile measurements) compared with the concentrations measured at two urban background reference sites across all seasons;
- Larger Ntot was found at the airport than at the reference urban background site;

Commission

Near-road (NR)
eBC concentrations were
on average 1.6 times higher
than those measured at the
urban background (UB) station


Higher concentrations tend to follow the arterial streets, particularly outside Milan downtown.

Based on OSM street classification, median

ΔeBC concentrations were 50-470 ng m⁻³ annually,

with the highest values near "big" streets and the lowest near pedestrian areas.

RI-URBANS (101036245)

Hot-Spots beyond RI-Urbans

- The pilot studies performed for characterisation of pollution hot-spots in the framework of the RI-URBANS project in the cities of Rotterdam, Bucharest and Milano have shown that advanced observations have added value to the understanding of exposure to air pollution in general and UFP in particular.
- The pilot studies using remote sensing instrumentation have shown that valuable data can routinely be acquired from strategically located ceilometers and Doppler wind lidars in order to assess the atmospheric dynamics that drive the dispersion of air pollution.
- Mobile observations provide great insight in characterisation of pollution hot-spots. Once instrumented vehicles are available, they can be deployed in all kinds of cities.
- The bicycle measurement approach demonstrates that mobile measurement campaigns combined with citizen participation are an effective method to obtain detailed urban air quality data.
- the hot-spot pilot shows that a combined use of various techniques, in-situ and remote sensing, will gain the most complete dataset to address the pollution studies for a particular city, especially in cases of complex (orographic) terrain, or large/mega cities with very complex building structures.

Thank you for your attention!

tuukka.petaja@helsinki.fi

teresa.moreno@idaea.csic.es

