# ST2: Equivalent black carbon ST11: Source apportionment of eBC

Marjan Savadkoohi, Marco Pandolfi, Andrés Alastuey, Xavier Querol, and the RI-URBANS eBC team

Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain









### ST2: Equivalent black carbon

- AQ Directive: Black carbon' or 'BC' means carbonaceous aerosols measured by light absorption | BC to be monitored in super sites.
- Optical absorption is proportional to BC by a constant factor called the 'mass absorption cross-section' (MAC).
- There is no standard method for measuring "BC" mass concentration, and therefore no limit value Indirect determination → several sources of uncertainties!
- Different measurement principles: Optical measurements (light absorption coefficient) and thermaloptical analysis (elemental carbon mass concentration).
- A suitable MAC for the conversion of light absorption into mass concentration, when reporting eBC mass concentration
- A harmonized way to apply corrections to filter-based absorption photometers (i.e. filter-loading, multiple scattering effect) is needed.
- Reference measurements are required to measure the absorption coefficient and correct for filter photometer artifacts!









#### Added Value of RI-URBANS Service Tool 2 (Black Carbon Guideline)

| Definition of Black<br>Carbon (BC)                 | Provides a clear and standardized framework for distinguishing eBC, supporting consistent use in research and policy.                       |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Methods for Determining eBC                        | Offers validated protocols (FAPs) ensuring reproducibility and comparability across sites.                                                  |
| Harmonization of Absorption and eBC Determinations | Aligns methodologies across monitoring networks, reducing discrepancies and enabling interoperability.                                      |
| Data Management                                    | Establishes common formats and processing guidelines, supporting near-real-time source apportionment and FAIR data principles.              |
| Recommendations and<br>Main Findings               | Demonstrated added value in pilot cities: improves variability representation, reduces artefacts, supports EU AQ Directive inclusion of BC. |



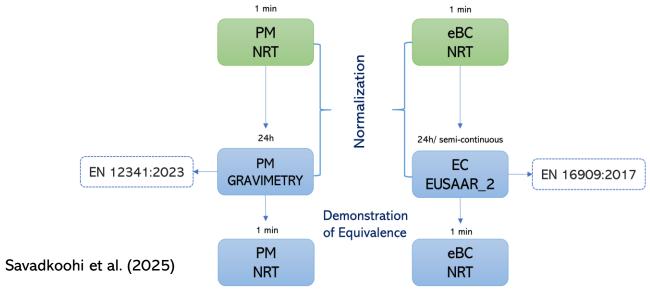




## Pan-European overview of eBC mass concentrations in urban Europe

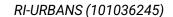
- Need for more long-term in-situ monitoring of BC and EC mass concentration across diverse urban, remote environments.
- Lack of harmonized methods, ensuring data comparability within European AQ monitoring networks.
- Integration of harmonized Absorption and BC data into climate-related and modeling studies.
- Harmonized source apportionment practices directly linked to health impacts.
- Real-time eBC source apportionment is needed for efficient abatement measures.

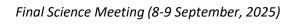





#### Steps to go further what FAPs are providing as raw data (eBC)


- For demonstrating the equivalence of a candidate method (e.g. the Beta-gauge technique) with the reference (gravimetric) method, it is allowed to establish first a site and time dependent calibration factor.
- > Using site and time dependent MAC values would very probably make it possible to demonstrate the equivalence between FAP techniques and the CEN standard method (EN16909) for determining EC.


















#### ST11: Source apportionment of BC

AE approach (Sandradewi et al., 2008)

Only two sources of pollution (limitation)



Aircraft



Industrial



Shipping



On-road, Off-road cars



Agricultural burning



Wildfire



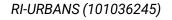
Heating



Cooking

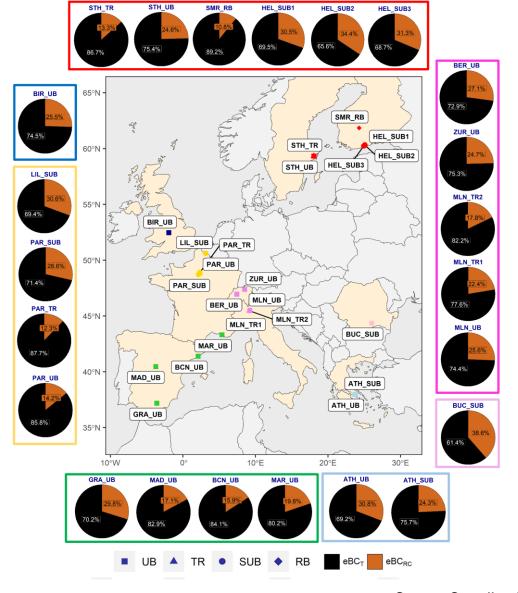


Highly sensitive to the choice of:

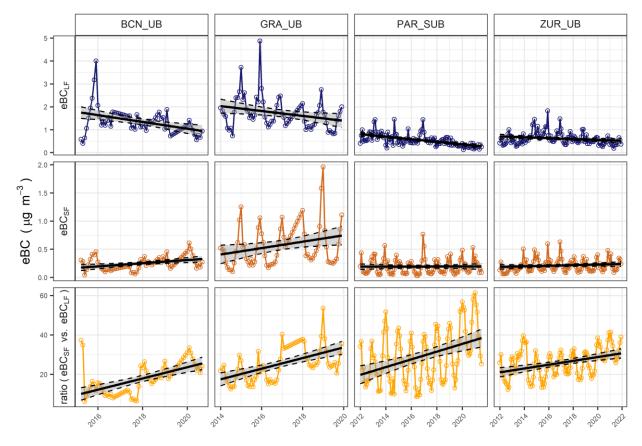

#### **Absorption Angstrom exponents (AAE) pairs**

- **❖ AAE**<sub>LF</sub> (liquid fuels): ~0.8–1.2
- ❖ AAE<sub>SF</sub> (solid fuels): variable, >1
- ❖ Fixed AAE values → ignores variability from sources, fuels, combustion conditions.
- ❖ AAE is site-dependent (affected by source mix, atmospheric aging morphology, transport).

primary & secondary emission sources












## r analyzing temporal > AQ policies!



Source: Savadkoohi et al. (2023)

RI-URBANS (101036245)

Final Science Meeting (8-9 September, 2025)





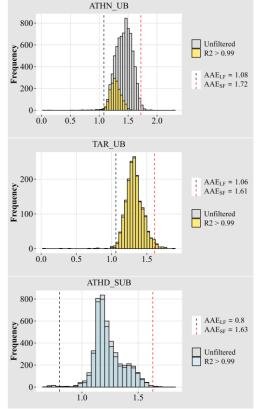


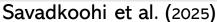
#### Methodological Approaches in ST11

- Refine the AE SA approach.
- Evaluate model performance with site-dependent AAE<sub>LF</sub> & AAE<sub>SF</sub>.
- Assess applicability of site-dependent approach for near real-time eBC dataset.

ightharpoonup AAE probability density function and percentile threshold to identify  $AAE_{LF}$  and  $AAE_{SF}$ 

Assessed the performance of PC approach: signal at mass-to-charge 60 (m/z 60; from ACSM) measurements, as an independent indicators of BB emissions.

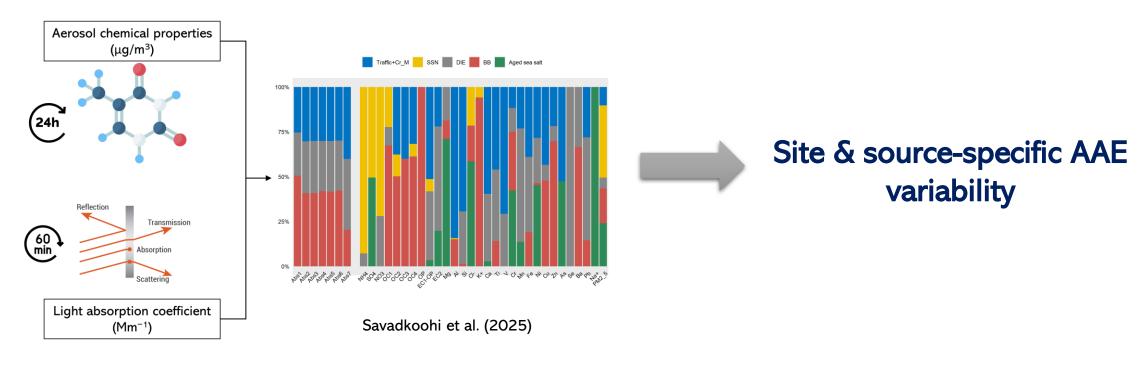

❖ Variability in AAE also affected by solid fuel sources rather than BB Aged organic aerosol with diverse chemical/physical properties, and brown carbon contributions misclassification, especially with overlapping sources (e.g., shipping, coal, biomass, wildfires, traffic)






RI-URBANS (101036245)

Final Science Meeting (8-9 September, 2025)





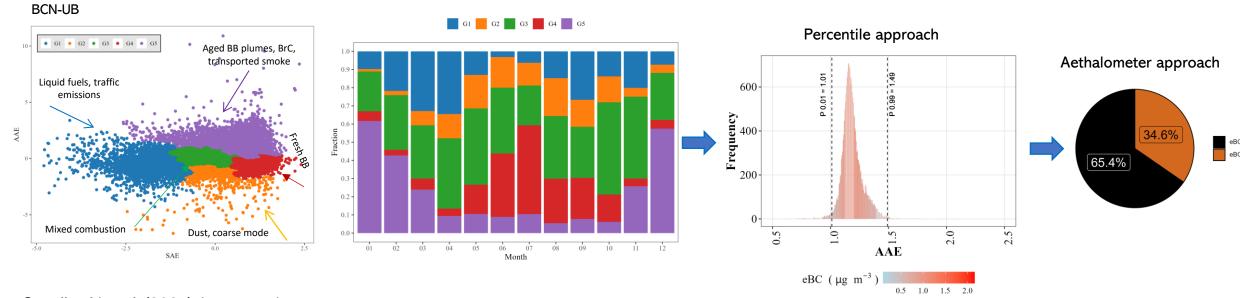



## Other source apportionment methods

High-resolution chemical + optical data enable multi-time resolution factor analysis (MT-FA) using receptor models.












## Other source apportionment methods

Aerosol light scattering and absorption using <u>Clustering analysis</u>









