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1. About this document 

WP2 focuses on evaluating the use of measurements of new air quality (AQ) metrics, especially 

nanoparticles, for improved health impact assessment and epidemiological health studies. This WP 

assesses methods to improve fine spatial scale resolution maps in cities based on modelling, mobile 

monitoring of nanoparticles and citizen observatories and tests the added value of these methods beyond 

routine monitoring. WP2 specific objectives are: (i) To assess added value of monitoring of new AQ metrics 

including nanoparticles, particle source contributions and oxidative potential (OP) at urban supersites for 

health effects assessment; (ii) To assess added value of harmonization of online and offline OP as an AQ 

metrics; (iii) To assess added value of mobile monitoring and citizen observatories to improve fine spatial 

scale urban mapping of nanoparticles and improved evaluation of health effects; and (iv) To develop 

synergy of these with downstream WP4-pilots and WP5-upscaling. 

This deliverable addresses T2.1 on the Improved evaluation of health effects in epidemiologic time series 

studies. Here particulate matter (PM), PM components, black carbon (BC), nanoparticles, OP and 

individual source contributions (from T1.1, T1.3) are used to complement data on regulated pollutants 

(PM2.5, PM10, NO2) for epidemiological studies and impact assessment to demonstrate the added value 

of new metrics beyond routinely measured pollutants. T2.1 links the time series of new AQ metrics to 

those of daily mortality and hospital admissions and meteorological parameters. We will analyse the pilot 

cities (Barcelona, Spain; Athens, Greece; and Zurich, Switzerland) (T4.4) and analyse additional cities from 

the compiled time series in WP1.  

The RI-URBANS D9 (D2.1) is a report that provides the best practices for evaluating the association 

between short-term exposure to air pollution and health outcomes (mortality and morbidity). All 

recommendations in this report can be applied to any air pollutant, including nanoparticles. The report 

includes recommendations on the type of data needed, sources for the health data, common challenges 

of health data collection, and a summary of two types of analyses, time series analysis and health impact 

assessment. 

This is a public document that will be distributed to all RI-URBANS partners for their use and submitted to 

European Commission as a RI-URBANS deliverable D9 (D2.1). This document can be downloaded at 

https://riurbans.eu/work-package-2/#deliverables-wp2 

 

2. Linking air pollution concentrations and health 

There are several types of studies that can be used to link short-term exposure to air pollution with health effects. 

Here, we will focus on two main types of studies that effectively use data from Air Quality Monitoring 

infrastructures in cities to draw conclusions on the health effects of different air pollutants. Thus, the methodology 

described here can be used to build a Service Tool based on atmospheric international Research Infrastructures 

(such as ACTRIS, https://www.actris.eu/) and nationwide public air quality networks in conjunction with medical 

registries to address air quality challenges.  

The two types of study described below both address the estimation of the short-term health effects of air 

pollution, i.e. those health effects that occur on the same day or a few days after an air pollution episode occurs. It 

is important to note that this methodology does not only estimate the effects of extreme episodes (i.e. days with 

very high levels of air pollution), but it also estimates effects of small changes in air pollution. These methods do 

not address, however, the estimation of effects of long-term exposure to air pollution, i.e. the effects of being 

https://riurbans.eu/work-package-2/%23deliverables-wp2
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chronically exposed (over years) to polluted air. The effects of long-term exposure to air pollution are generally 

more important than the short-term effects, but these often require other specific and costly epidemiological 

designs. The estimation of short-term effects can be done at a low cost based on existing infrastructures, and the 

results of these studies can provide timely and useful information on the harmfulness of different air pollutants. 

The studies on short-term effects usually detect the effects of air pollution on the most vulnerable groups of 

population. 

Two main studies on short-term exposure effects will be described: 

a) Time series studies (TSS). Such studies compare data from two time series: one of daily air pollution 

concentrations, and another of daily health indicators such as the daily number of deaths or the daily number 

of hospital admissions. If air pollution has an effect on mortality, one would expect to see a higher number of 

deaths on polluted days in comparison with clean days. Such studies are based on a single location, e.g. a city. 

TSS are used to investigate if an association exists and to quantify its magnitude. The data analysis requires 

complex methods that control for temporal and seasonal trends and time-varying potential confounders. In 

order to produce trustful estimates, TSS require a large number of cases, which can be achieved by conducting 

the study in large cities, by having long daily time series for several years, or by pooling data across cities. 

b) Health impact assessment (HIA). This technique uses existing knowledge on the relationship between air 

pollution and health to predict what is the expected effect in a target population, or to predict the health 

benefits in the target population under realistic assumptions (e.g. what would be the health benefits of reducing 

the levels of a certain air pollutant by 10%, or by not exceeding some recommended limits). Thus, HIA is not 

used to investigate if a relationship between pollution and health exists, but to predict the local health burden. 

 

3. Time series analysis 

3.1. Health data collection  

3.1.1. Types of health data 

Estimates of short-term associations between air pollution and health are usually based on studying the relationship 

between daily variations of air pollutant concentrations and daily counts of health outcomes such as mortality 

and/or morbidity (e.g.: hospital admissions or hospital visits by various causes). Common mortality and morbidity 

outcomes that are often associated with short-term air pollution changes are respiratory and cardiovascular 

diseases. Such studies are usually conducted at the city level. 

Daily mortality and hospitalization data (visits, emergency admissions, etc.) often originate from official registries 

and hospital reports and may include information such as cause of death, age, sex and the patient´s place of 

residence. This information can be used to evaluate the impacts of air pollution on sensitive groups of population. 

For this purpose, health outcomes may be aggregated by age, sex or cause of death/admission. 

Mortality causes and hospital admissions diagnosis are usually classified according to the International Classification 

of Diseases (ICD), developed by the World Health Organization (WHO) (https://icd.who.int/en).  

3.1.2. Sources for health data 

The most recommended sources for health data are national statistics offices and national/regional health agencies. 

Data from statistics offices and health agencies are often released with a lag time of months or years after 

collection. If very recent total daily mortality data is needed, burial services that have a wide coverage in the city 

may be used as a source, although this data is likely to lack information e.g., on cause of death, sex, age and place 

of residence of the deceased. 
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3.1.3. Issues affecting health data quality 

An important issue for any data analysis is data quality. Health data records have the advantage of containing 

information of long periods and cover large populations (Baker and Nieuwenhuijsen, 2008) with little, if any, missing 

data gaps, as doctors register health incidents on a daily basis. However, other data quality issues may arise from 

these records: 

• The patients’ place of residence may be based on the information recorded by the primary health care system 

registration, which may be outdated. This issue may cause incorrect inclusion/or exclusion of patients in the 

researched geographic area. 

• Misdiagnosis is in general another cause of health data quality issues. Misdiagnosis of the cause of 

death/hospitalization will result in underestimation or overestimation of cause-specific daily counts and 

(random) noise in the daily count data (Baker and Nieuwenhuijsen, 2008) 

• ICD codes have undergone modifications throughout the years, going from the 6th revision (1948) to the most 

recent 11th revision (2022). Diagnosis record errors may arise from the transition from one ICD revision to 

another. These transitions may also affect time series, when shifting from one version of ICD to the next. 

• Multiple hospital admissions with the same diagnosis in a short time interval (e.g., days or weeks). Patients 

may return to the emergency room a few days or weeks after the first incident. While this emergency admission 

will be recorded twice by the hospital, the second hospitalization may be caused by the same diagnosis as the 

first, and could be seen as a continuation of the same event. One may avoid this “double counting” by excluding 

repeated hospitalizations with the same diagnosis within for instance one month apart from each other. This is 

only feasible when data on individuals can be accessed. 

• Misinterpretation of the data request: authorities may misunderstand the health data request and include for 

instance emergency visits (patients leave on the same day) instead of only non-scheduled hospital admissions 

(overnight stays). To avoid misunderstandings, one should create a clear request, making sure to state any 

patient inclusions and exclusion rules adopted by the study.  

• The agencies/offices might have different methodologies for collecting and storing the data. Therefore, they 

might not be collecting the exact same thing. E.g. different way of coding primary/secondary diagnosis, more 

vs. less detailed information (e.g. more specific ICD code vs general ICD groups), etc. One may be aware of these 

differences and take them into account in the discussion of the results. 

3.1.4. Common challenges during health data collection 

The following topics should be considered at the design phase of epidemiological time series studies: 

• Data suppression: some health data providers may supress small numbers of health outcomes to minimize the 

risk of patient identification. For instance, days in which less than 5 people died of respiratory diseases may be 

replaced with a missing value (Not Available, NA).  

 

Recommendation: to avoid data suppression one could request broader population groups by increasing for 

instance the age category range (e.g., from 0-74 years old instead of 0-10 years old) or completely removing 

aggregation categories such as age and sex from the analysis. Requesting data from large geographic regions 

instead of city level decreases the incidence of small numbers and consequently data suppression, at the price 

of the air pollution data collected being less representative of the entire population under study. Removing 

cause-specific outcomes from the analysis or choosing only large disease groups could also decrease data 

suppression, at the price of only being able to conduct less detailed analyses. One can deal statistically with 

suppressed data by using models for left-censored data or using techniques like multiple imputation. However, 

the percentage of data suppression should be kept small to obtain meaningful results. 
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• The amount of suppressed data may be unknown when making the request: authorities may require 

prepayment of the data before estimating the amount of suppressed information. In those cases, only after the 

payment one will know if the data suits the purpose of the study.  

 

Recommendation: request broad categories of data aggregation. Broader aggregations are less likely to contain 

small daily outcome numbers and therefore are less likely to be suppressed by the authorities. When data 

suppression is unavoidable, data imputation may be used to estimate missing values. 

 

• Expensive data: the prices for health data can vary significantly among cities and from one authority to the 

next, ranging from zero to over several thousand euros.  

 

Recommendation: search for official sources that provide health data for free. Alternatively, decreasing the 

level of details of the data request can decrease costs. For instance, reducing the period of analysis from 20 to 

10 years or not requesting data aggregation by city, sex, or age may reduce the data processing time (statistician 

worked hours) and therefore, reduce the overall data costs. Detailed health data aggregation usually requires 

a longer processing time or a license, which significantly increases costs. In any case, project funding should be 

allocated for data purchasing accordingly.   

 

• Unavailable recent data: health data providers may release data with a few years (often 1-2 years) of delay due 

to data collection and curation processes.  

 

Recommendation: design the epidemiological study taking into consideration delays in data availability. 

 

• Data release waiting period:  weeks or months may pass from the time of data request to the time of data 

release, depending on the type of data, data aggregation, health authority and country.  

 

Recommendation: design the study expecting a waiting period of 1-6 months after data request for receiving 

the datasets. Health data requests should be sent at early stages of the project to avoid possible delays in data 

analysis. 

 

• Data access limitations (In-situs): Some health data providers may have policies that restrict data access by 

foreign countries. In this case data access is usually allowed only in-situ with special permission.  

 

Recommendation: reserve a budget for data acquisition travelling expenses, or alternatively, contact a colleague 

located in that particular country to access the data or carry out the data analysis in-situs.  

 

• Data license limitations: Depending on the authority and how detailed is the request, health data may be 

granted through a data license application which may contain limitations such as: project usage (usage allowed 

only by projects mentioned in the license), expiration date and data combination with other datasets. The 

authority may also request that data released under an expiration date is destroyed upon expiration.  

 

Recommendation: Health data licenses and agreement rules should be followed to avoid penalties. It is 

recommended to create a catalogue for each dataset to record data usage limitations such as license expiration 

date, usage by other projects, authority´s request for data destruction, etc.  
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An example of a health data catalogue is provided below In Table 1. 

Table 1: An example of a health data catalogue. 

NAME OF THE CITY 

 MORTALITY HOSPITALIZATION 

ID REQUEST   

DATE OF DATA REQUEST   

DATE OF DATA ARRIVAL   

PERIOD   

AGE GROUPS   

SEX GROUPS   

CAUSES   

REGION   

INDIVIDUAL / TABULATION   

SUPPRESSION   

PROVIDER   

CONTACT   

COST   

AGREEMENT END DATE   

NOTES   

 

3.2. Exposure and other relevant data 

3.2.1 Exposure data  

Time series analysis to associate short-term air pollutant variations with short-term variations in health outcomes 

usually rely on daily measurements of the exposure variables. One of the reasons is that the health data most often 

used comes at a daily resolution, but there are examples where researchers have used hourly data, for example to 

explore the relationship of air pollution with the time of the day of patients having a stroke (Vivanco-Hidalgo et al., 

2018). Conventionally regulated air pollutants such as for particulate matter (PM) < 2.5 µm or < 10 µm, NO2, SO2 

and O3 are often used as exposure variables in epidemiological time series studies. However, recently, attention 

has been shifted to particle metrics that, unlike mass, are unrestricted by air quality regulations like particle 

number, number size distribution and PM chemical composition (e.g., time series BC contents). 

3.2.1.1 Quality of air pollution data 

As for the health data, air pollution data with the highest quality should be used for performing any epidemiological 

analysis. For time series analyses, it is recommended the use of data from urban background stations or other 

datasets collected with well documented Quality Assurance protocols (use of standardized protocols and 

instrumentation, calibrated instrumentations, proper data curation, etc.). The location of the monitoring station 

should be representative of the outdoor air of the area of study as this is, generally, the only location from which 

data will be collected. There is extensive documentation that a single site may represent the temporal variation of 

a city well. However, if multiple sites are available in the city, one can use the average of multiple stations to 

represent the city. 

3.2.1.2 Missing data in the air pollution time series 

Long-term exposure measurements often suffer from problems like missing data, periods of inactivity for 

maintenance purposes, etc. Some variables, for instance, may be measured every two or three days instead of 

every day, which may require the use of interpolation techniques to fill in the missing values, as data gaps should 

be avoided for a more reliable estimation of the exposure-health effect associations. Other analysis options can be 

envisioned to account for gaps, such as working with the incomplete series, but they are not ideal (Samoli et al., 

2014). 
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3.2.2. Complementary data  

Statistical models used for epidemiological time series studies should be adjusted to account for potential 

confounding variables and consequently reduce uncertainties from the modelled results. The model may be 

adjusted for measured and unmeasured variables such as the ones described below:  

• Long-term time trends and seasonality: researchers often adjust models with flexible functions of time (e.g. 

splines), to control for seasonal and long-term trends. Splines can account for both long-term trends (e.g. a 

gradual decrease/or increase in mortality and air pollution levels) and seasonal patterns (e.g. increases in 

mortality and air pollution in winter). Splines offer enough flexibility to capture different seasonal patterns each 

year. The inclusion of splines of time in the model is a way to control for unobserved confounders that vary 

slowly over time and is an essential step in the analysis in order to obtain unbiased results. 

• Weather variables: temperature and relative humidity are known confounders for air pollution-health 

associations. Temperature affects health outcomes in a non-linear manner, for instance increasing mortality 

during cold days in the winter and very warm days during summers (Gasparrini et al. 2015), and often 

temperature covaries with time. The health effects of hot temperatures are often immediate (the most 

important effects are detected at lags 0 to 2), while the health effects of cold temperatures can be delayed 

several weeks. Other meteorological variables are associated with air pollution (e.g. wind) but the relationship 

with health is less obvious. Thus, it is not clear that they act as confounders and one may not need to adjust for 

them in the analysis. Meteorological data is often readily available from meteorological or air quality monitoring 

networks.  

• Bank holidays: holidays influence air pollutant concentrations as people travel outside the city boundaries and 

fewer people need to reach the city to work. A decrease in the number of dwellers reduces pollution by 

decreasing, for instance, the number of vehicular emissions in the city. Similarly, health outcomes may also 

show a weekday dependence (Bates et al. 1990). This dependence may be caused by lower pollution levels in 

the city, or other weekend/holiday related factors like decreased number of health care workers resulting in 

increased mortality (Huang et al. 2019; Jahromi et al. 2019). Thus, analyses need to be adjusted for bank 

holidays and day of the week. 

• Other air pollutants: other air pollutants may bias the time series analysis results. For example, imagine the 

case where one particular air pollution component is the only responsible for producing health effects. If one 

performs a time series analysis for another air pollution component that is correlated with the causal one, 

researchers may attribute a casual effect to the non-causal component. Weather affects multiple pollutants in 

the same way (e.g. low mixing height or stable atmosphere), and many air pollution components have the same 

source (e.g. combustion vehicles). These aspects lead to concentrations of several pollutants being highly 

correlated. For example, PM, NO2 and SO2 are known confounders (Bell et al. 2004) that show similar day-to-

day variations, all affect health, and all influence PM concentrations by gas-to-particle secondary particle 

formation. Disentangling the health effects of different pollutants is one of the most challenging parts of the 

statistical analyses. 

• Influenza: Influenza and respiratory infections are associated with mortality and explain significant part of the 

mortality peak in winter months (Peng et al. 2006). These influenza peaks may coincide with peaks of air 

pollution. Therefore, one needs to control for that in the analysis. When influenza data is unavailable, a proxy 

for influenza epidemics may be created by selecting weeks showing peaks in mortality/hospital admissions 

caused by respiratory diseases.  

3.3. Required sample size 

The short-term effects of air pollution are usually small in magnitude. For example, the HRAPIE project reports 

mortality increases of around 1% associated with a 10 g/m3 increase in PM2.5 concentrations (World Health 

Organization, Regional Office for Europe, 2013). For hospital admissions, the estimates range from 0.5 to 2% for 

PM2.5, and for incidence of asthma symptoms in children, estimates almost reach 3%. It is important to note that 
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although the percent increase in mortality and hospital admissions is small, these cumulate over all days and 

everyone is exposed. Thus, they can represent an important burden. For example, in large cities, they may represent 

several hundred premature deaths per year. 

In order to detect such small increases in mortality or hospital admissions, which are much smaller that the day-to-

day variation in these variables, one needs big studies. Otherwise, studies do not have statistical power to detect 

such changes. Thus, one should not embark in conducting a time series study with small datasets, as they will likely 

not detect the associations, even if they really exist, and are also at higher risk of finding false positive associations. 

The statistical power of time series studies and the required sample sizes to conduct them, have been explored 

recently (Armstrong et al. 2020). In their study, one of the most important factors was the total number of cases 

included. They found that, in order to have 80% power to detect an increase of 1% in the health outcome associated 

to an increase of 1 usable standard deviation (this may be close to the 10 g/m3 increase often reported, e.g., in 

London, UK it was 8.5 g/m3), one would need around 100,000 deaths. For example, the city of Barcelona (Spain), 

with a population of around 1.5 million, has a daily average mortality count of around 50 deaths per day. These 

represent around 18,250 deaths per year. Thus, a time series study would require at least 5.5 years of data to have 

enough power. One can achieve the required number of deaths by studying large cities, by studying long time 

periods or by combining data from different cities. In order to detect increase in the health outcome of around 2%, 

the required number of events goes down to around 25,000. 

3.4. Data analysis 

Time series analysis of health effects of air pollution has a long tradition in the epidemiological literature. Although 

there are several potential methodologies to analyses such data, the most commonly used one is based on quasi-

Poisson regression models. A very good introduction can be found in Bhaskaran et al. (2013). Peng and Dominci 

(2008) is also a good source for more advanced analyses. Those models are used to account for the fact that the 

response variable are counts and to account for over-dispersion in the data, which Poisson regression models 

cannot account for. The autocorrelation in the data is taken into account by using spline functions of time.  

Delayed effects are taken into account by introducing into the model lagged versions of the pollutant series. Usually, 

the health effects of air pollution are found at very short lags, e.g. between lags 0 and 2. However, effects of up to 

7 days are sometimes explored. If several lags of the pollutant series are introduced at the same time in the model, 

it will result in the so-called distributed lag models (DLM). As lagged versions of the pollutant series are highly 

correlated, the distributed lag model can be affected by collinearity problems. One way to solve this is to impose 

some (realistic) constraints. For example, that the estimated effects need to change smoothly over lag periods. In 

other words, that the effect at lag 0 needs to be similar than that at lag 1, that the estimated effect at lag 1 needs 

to be similar than the estimated effects at lags 0 and 2, and so on. Such models are called constrained distributed 

lag models, and produce estimates that are less variable (and have narrower confidence intervals) in comparison 

with unconstrained models (Armstrong 2006). Often, one constrains the estimated effect to vary smoothly over 

lags with a spline function. Recent advances also allow the estimation of nonlinear effects, leading to the framework 

of distributed lag nonlinear models (DLNM) that allow estimating nonlinear and delayed effects (Gasparrini et al. 

2010; Gasparrini 2011).  

Multi-city studies are often conducted. Usually, each city is analyzed separately, and results from the different 

cities are combined with univariate meta-analysis, when a single parameter needs to be combined (Borenstein et 

al. 2010; Katsouyanni et al. 2001), or with multivariate meta-analysis (Gasparrini and Armstrong, 2013), when one 

needs to combine several parameters (e.g., when estimating nonlinear curves).  

Finally, a challenging issue is how to separate the effects of multiple air pollutants. This is still an area of active 

research, but some options are available. Often, it is useful to start by fitting single pollutant models separately for 

each pollutant, and proceeding in a second step by fitting two-pollutant models, as long as they are not very highly 
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correlated. If the sample size is very large, one could even try to fit two-pollutant models with highly correlated 

pollutants. Then, one can try more sophisticated analyses to uncover more complex patterns. 

The sections below provide a few more details on some of the issues mentioned in this section.    

 3.4.1. Single and Distributed lag models 

The effects of air pollution on health may lag in time from a few days to a few weeks (Peng and Dominici 2008). For 

example, the mortality counts of today may result from the effects of yesterday´s pollution rather than today´s 

pollution. Thus, to accurately estimate the effects of air pollution on health, the lagged effect of air pollutants 

should be considered. The lag effect is often estimated by adding a lag term to the quasi-Poisson regression model, 

which is done by the use of single lag models or distributed lag models.  

• Single lag model: assumes that an increase in exposure affects the outcome “l” days later (lag). This type of 

model considers lag days individually. That is, it uses one lag per model fit. This model has the advantage of 

being unaffected by missing days. However, it disregards the cumulative effect of air pollution exposure several 

days previous to an event occurrence, and does not address confounding by other lags (Peng and Dominici 

2008).   

• Distributed lag models (DLM): DLMs offer the advantage to evaluate the exposure-response association 

between pollutant and health outcome several days later, cumulatively (Gasparrini et al. 2010) and 

simultaneously. That is, it considers the cumulative of several lag days in only one model fit. One can actually 

obtain estimates for the effect of air pollution at one lag (adjusting for other lags) or for the cumulative effect 

of air pollution across all lags. Indeed, the effects of a peak of air pollution on mortality can be observed on the 

same day, on the day after, after two days, and so on, so the full effects of air pollution on mortality are the 

sum of those daily effects. Equivalently, using a backwards view, mortality today is an effect of the air pollution 

levels observed today, those observed yesterday, those observed two days ago, and so on. As disadvantages, 

DLMs require complete datasets (no missing days) (Peng and Dominici 2008). The latter limits the usage of DLM 

to variables that are either measured daily or variables that contain imputed data. Distributed lag models 

include highly correlated predictors (the lagged air pollution vectors) in the same model, and therefore results 

can have problems of collinearity. For example, the estimates can be quite variable, with even changes in 

direction of some estimated effects, and the confidence intervals can be very wide (Basagaña and Barrera-

Gómez 2022). It can be a good practice to introduce some constraints to the model, for example that the 

estimated effects should vary smoothly over lags. In other words, that the effects of adjacent lags should be 

similar. With this, we try to avoid things like having a high estimation for lag 0, a very low one for lag 1, then 

again a very high one for lag 2, and so on (wiggly estimates). This is often done by constraining groups of lags 

to have the same estimated, or by forcing the estimated effect of lags to vary smoothly according to a spline 

function. The mathematics behind this are complex, but luckily there is currently a package in the R software 

that facilitates fitting such models (DLMN package, (Gasparrini 2011)). The package also allows estimating 

nonlinear associations within the framework of (constrained or unconstrained) distributed lag models, 

providing high flexibility. Useful reference to fit such models are available (Gasparrini et al. 2010; Gasparrini 

2011). A trade-off for the flexibility of distributed lag nonlinear models (DLNM) is the extra complexity 

introduced in the analyses, as many assumptions/decisions should be made on how to model the exposure-

response and lag-response relationship (Peng and Dominici 2008). The penalized framework for distributed lag 

nonlinear models facilitates some of the analyses decisions (Gasparrini et al. 2017). 

3.4.2. Adjustment methods for time trends 

Both air pollution and health are often affected by time varying factors such as seasonality and long-term trends, 

which can confound the association between these variables. Adjustment for seasonality and time trends is an 

essential part of the analysis. There are several examples in which not adjusting for seasonality leads to wrong 

conclusions. For example, mortality is usually higher in winter, when concentrations of ozone are low, and lower in 
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summer, when concentrations of ozone are high. The increased mortality in winter is due to respiratory infections 

and to other factors. A simple analysis linking mortality and ozone concentrations that does not account for such 

patterns would conclude that ozone is good for mortality (Bhaskaran et al. 2013).  

Choosing the degree of adjustment for seasonality and time trends still generates some debate. Below, we describe 

some of the most common ways to control for time trends and seasonality. 

3.4.2.1. Time stratified model (simple indicator variables) 

One way to control seasonality and time trends is to stratify the data into different time scales (e.g., months, years, 

elapsed calendar months) and then input these functions of time in the regression model. For example, creating 

strata formed by groups of days from the same year, month and day of the week, and introducing these strata as 

adjustment variables in the regression model. While time stratified models can capture well long-term patterns, 

these fits can produce biologically unreasonable jumps from one interval to the next, in addition to requiring a large 

number of parameters (Bhaskaran et al. 2013). 

3.4.2.2. Periodic functions (Fourier terms) 

One can include in the model periodic functions of time such as Fourier terms (sine – cosine pairs), which are 

particularly useful for representing seasonality. These models generate fewer parameters and result in a smoother 

fit in comparison with the time stratified method, but they fail to capture year-to-year and non-seasonal variations 

(Bhaskaran et al. 2013). 

3.4.2.3. Flexible spline functions 

Flexible spline functions are smoothly jointed polynomial curves (often cubic) that can be used to represent trend 

and seasonality. These functions can be generated in a Poisson or quasi-Poisson model using as input a set of basis 

variables that are functions of the time variable. Although mathematically more complex, splines have the 

advantage of modelling trends and seasonality smoothly while still capturing variations between different years. 

Fitting spline models has become easy with current statistical software. The use of splines to control for temporal 

trends has become the most commonly used method in environmental epidemiology studies. 

The flexibility of the spline is controlled by the number of knots or the number of degrees of freedom (df), thus, 

carefully choosing the number of dfs that best fit the data is essential for removing time trend and seasonality 

without removing part of the short-term variation (Bhaskaran et al. 2013). The choice of df in the analysis is still the 

most complex part of controlling for time trends.  

3.4.2.4. Deciding on spline smoothness levels  

The smoothing function of time is used to remove the confounding effects of long-term trends and seasonality from 

the variable of interest. How smooth this function is allowed to be will define the amount of residual variation from 

which the association between exposure and health outcome will be estimated. The smoothness of the time 

function is determined by the number of dfs and therefore, finding the optimum number df is crucial for an accurate 

association of air pollution and health effects.   

The most common methods used for determining the best number of dfs of the time smoothing function are either 

empirical or data driven (Peng et al. 2006; Peng and Dominici 2008). The “empirical method”, consists of choosing 

df based on previous experiments or published studies, while the data driven method consists on fitting the time 

smoothing function a number of times and choosing the number of dfs that best fits the data based on a particular 

evaluation criterion. For instance, the df that minimizes the autocorrelation of the residuals (Peng et al. 2006). 

Some methods that have been recommended include: 
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• Fixing the number of degrees of freedom per year a priori (Perrakis et al. 2014). For example, 7 or 8 df per year 

have been suggested to be adequate for effectively removing the time trend of data without significantly 

removing short-term variations (Bhaskaran et al. 2013; Dominici et al. 2000). 

• Find the df that minimize the absolute value of the sum of Partial Autocorrelation Function (PACF) over the 

number of lags (Peng et al. 2006; Perrakis et al. 2014). 

• Find the df that best summarize the temporal pattern in the pollution series (Dominici et al. 2004; Peng et al. 

2006), although one should not attempt to explain all the variability with a time function. 

Whatever methods is chosen, it is a good practice to repeat the analyses with one or several other values for the 

df, to explore how sensitive are the results to the choice of df. 

3.4.3. Adjustment methods for temperature 

Temperature has a non-linear effect on mortality, as temperature increases may be both beneficial and detrimental 

to health depending on the season (Curriero et al. 2002). Due to the non-linear nature of the association between 

temperature and health outcomes, temperature effects may be modelled by adding one or two (cold and warm 

seasons) natural or cubic spline functions to the Poisson regression model (Armstrong 2006; Curriero et al. 2002; 

Rivas et al. 2021; Samoli et al. 2016; Stafoggia et al. 2017). The smoothness of the spline is controlled by the number 

of degrees of freedom. These functions can be used in a lagged manner to account for the delayed dependence of 

health outcomes on temperature. Effects of temperature can occur over long lags (e.g. up to 28 days). Thus, 

completely capturing the effect of temperature may need the use of very flexible crossbases. Including those 

complex temperature terms in a model of air pollution can introduce problems if datasets are not large enough.  

3.4.4. Shape of exposure response function  

The health impacts of PM are observed even in areas where PM concentrations are below regulatory limits  (Liu et 

al. 2019). This fact implies that PM and health may have a nonlinear relationship, unlike previously thought. 

Knowing the correct shape of the exposure-response association between air pollution and health is important to 

create adequate air pollution mitigation strategies to protect human health (Samoli et al. 2005). Although some 

authors argue that the association between air pollutants and health outcomes is often considered linear (Devos 

et al. 2016; Kreienbrock 2014), this shape of association may not be completely adequate for some pollutants (Pope 

et al. 2015). Samoli et al. (2005) investigated the shape of the exposure-response curve between PM10 and health 

outcomes in a multicity study using spline regression models and reported that linear models are adequate fit for 

the association. The most comprehensive analysis of time series studies, which includes 652 cities and almost 60 

million deaths, showed that the relationships were quite linear, but with steeper slopes at lower PM concentrations 

(Liu et al. 2019).  However, the association can be considered linear in many ranges of PM. Thus, researchers could 

explore the range of air pollution levels in their study and decide if linearity can be assumed. Assuming linearity 

facilitates the analysis and the interpretation of results. However, as mentioned above, techniques to estimate 

nonlinear associations are readily available, and one could fit those and let the data decide if the relationship is 

linear or not. It is also important to keep in mind that health impact assessment is facilitated if linear (or other 

parametric forms) are available.  

3.4.5. Single city vs meta-analysis. 

Associations between air pollution and health based on a single city may be considered unrepresentative and may 

not necessarily be observed in other cities with distinct characteristics such as population density, population age, 

air pollution sources, climatic conditions, etc. For this reason, studies often use a multi-city approaches over single 

site approach. Multisite approaches offer advantages, such as increased representativeness and potential for 

generalization of the results, possibility to investigate causes for inter-site variations, or increased statistical power 

in comparison with the single site approaches (Basagaña et al. 2018).  
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In multi-site studies, the overall exposure-health effect association can be obtained with a meta-analysis approach 

that aims to combine risk effects from several sites under a single statistical model framework. Essentially, meta-

analysis computes a weighted average of the single-site effects, giving more weight to those sites with more precise 

estimates (usually those with the bigger sample size), and quantifies some measures of uncertainty in the results.  

Meta-analysis may be done by either assuming fixed-effects or random-effects. In practice, many researchers 

choose a random-effects meta-analysis, thus allowing for heterogeneity of the results across sites. It is important 

to note that under a random-effect meta-analysis one can estimate from the data that there is no heterogeneity, 

thus effectively fitting a fixed-effects meta-analysis.  

When one aims to combine a single estimate across sites (e.g. a relative risk from a single lag, or the combined 

effect across several lags), one can fit univariate meta-analyses. However, when one needs to combine several 

parameters per site (e.g. the effect at multiple lags, or a nonlinear effect represented by several parameters), one 

needs to use multivariate meta-analyses. There are several resources that illustrate how to conduct multivariate 

meta-analyses in the context of distributed lag nonlinear models (Gasparrini and Armstrong 2013).  

3.4.6. Single vs multipollutant models 

The air we breathe comprises a mixture of harmful gases and particles in solid and liquid states. The different 

pollutants often share temporal patterns as several of them share the same weather influences and sources (e.g. 

vehicles or industry). The day to day variation of air pollutant concentrations is primarily affected by environmental 

factors such as temperature, boundary layer height and relative humidity, as well as variations in emission sources. 

For these reasons, the concentration of several air pollutants may increase or decrease simultaneously with other 

pollutants, inducing a correlation among them. For example, total particle number and nitrogen oxides are often 

correlated as they are both influenced by road traffic (Dos Santos-Juusela et al. 2013). This is a problem for 

inference, as if one finds an association between a pollutant and a health metric, the pollutant in question may not 

be the one causing the health effects, but one that is correlated with a pollutant causing the health effects (World 

Health Organization, Regional Office for Europe, 2013). It can also be the case that several pollutants, or the mixture 

of them, is what is causing the health effects. Disentangling the health effects of different air pollutant is one of the 

more complex questions in air pollution epidemiology. In the case of time series analyses, these are observational 

studies in which certain pollutants almost always occur in conjunction, thus leaving a small variation to study what 

happens when one of the pollutants has high levels while other has low levels (such circumstances many never 

occur, or occurs with very low frequency). This leads to high correlations that make it difficult to separate the 

different effects, unless huge datasets are available. When one wants to study several pollutants, the situation 

becomes worse. Ideally, a possible solution for this problem is to perform a multi-site study using highly contrasting 

sites as the different characteristics among sites may help the identification of potential confounding pollutants 

(Dominici et al. 2003). However, this is not always possible. Some statistical techniques have been proposed to 

analyse the effects of mixtures of highly correlated pollutants, but they are all limited by the amount of information 

of in the data (i.e. highly correlated pollutants provide limited information on the individual effect of each of the 

individual components). 

It is recommended to start the study of multiple pollutants by fitting single pollutant models, i.e. models that only 

include one pollutant. Such models provide a first idea of potential associations present in the data, but the analyst 

should keep in mind that those models fail to consider the potential confounding effect of other air pollutants. 

Thus, when interpreting the results, analysts should always consider the possibility that the observed results are 

driven by a highly correlated pollutant, i.e. a pollutant that tends to have high levels at the same time that the 

pollutant in question. It is also recommended to study the correlation patterns between pollutants to have an idea 

of how they co-occur. 

A second step often done in practice is to fit two-pollutant models (Chen et al. 2021; Liu et al. 2019). These can be 

done to see how the estimated effect of a main pollutant of interest changes after adjusting for other potentially 
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harmful pollutant, or in general to see which of the pollutants still show an association while adjusting for the other. 

Sometimes, two pollutant models are restricted to pairs of pollutants that are not very highly correlated (Wang et 

al. 2020), assuming that for very highly correlated pollutants the effects are impossible to separate (with the 

available sample size). Indeed, two-pollutant or multipollutant models often result in unstable estimates when 

handling highly correlated pollutants, so their results need to be interpreted with caution.  

Apart from the issues explained above, another issue to consider is that different pollutants can be measured with 

different degrees of measurement error. Thus, it is possible that some regression coefficients are stronger than 

other simply because the particular pollutant was measured with less error than the others. 

3.4.7. Issues when studying PM components 

One of the challenges when studying the effect of PM components is that one or more particular constituents of 

PM may be highly correlated with total PM mass, for example, those that represent a large proportion of PM. In 

that case, the constituent may seem more strongly associated with the health outcome than other components 

simply because of its association with total PM (which is already associated with health) rather than because of its 

inherent toxicity (Mostofsky et al. 2012). Also, as mentioned above, many constituents may be driven by the same 

meteorological conditions, leading to high correlations between constituents. Constituents may also serve as 

tracers for a prevalent source. Thus, if one finds a health effect for a particular constituent, it may be interpreted 

as its own impact and also those of related constituents in the same source. In general, constituents are often 

emitted from several sources, and a single source emits several pollutants, so in practice it is very difficult to 

distinguish independent toxicities in an observational study (Mostofsky et al. 2012). Still, several complementary 

analyses can be fitted to assess for potential confounding by total PM mass. These include, as described in 

Mostofsky et al. (2012):  

• Adjusting the models for total PM mass. This represents the effect of the constituent while holding the other 

constituents as constant. This approach has the risk of over-adjusting for factors that may be highly correlated 

with PM but that are also toxic.  

• Analysis using constituent residuals: here, the analysis explores the effect of a specific constituent while 

holding total PM constant (i.e. it implies levels of other constituents are lower). 

• Analysis using PM residuals. They explore the effect of PM independent of the impact of that specific 

constituent. E.g., what is the effect of increasing PM in days with similar value of the specific constituent. 

• In any case, results from analyses of different constituents should be interpreted with caution and guided by 

theoretical knowledge and results from experiments.  

3.4.8. Ultrafine/Nanoparticles 

Nanoparticles or ultrafine particles (UFP, usually defined as particles finer than 100 nm) are commonly measured 

in number concentrations (PNC) instead of the mass concentrations (PM) used for other aerosol fractions, such as 

PM2.5 and PM10. In general, UFP or PNC and coarser fractions of aerosols are poorly correlated, which indicates that 

they are not indicative of each other (de Jesus et al. 2019; Marconi et al. 2007).  

It has to be considered that, in RI-URBANS, UFP are approached in WP1 by evaluating measurements of PNC size 

distributions (PNSD), PNC, and UFP. According to the European Committee for Standardization (CEN) and ACTRIS 

recommendations, PNSD should cover range of 10-800 nm. The PNSD datasets from 26 measurement sites have 

implemented measurement protocols starting with a particle size detection limit of 3 to 20 nm, depending of the 

site, and with a coarser one from 400 to 1000 nm. 

Because 80-90 % of the total PNC (10-800 nm) is built up by the UFP fraction (<100 nm) (Baldauf et al., 2016; Hopke 

et al., 2022), we will use the terms PNC and UFP indistinctively. In any case, UFP concentrations are strongly 

dependent on the lower size limit that is being measured (i.e. higher concentrations should be expected when 

measuring PNC3-100 than when measuring PNC20-100), especially if studies also intend to evaluate the health effects 
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of the nucleation mode particles (PNC<25 nm). The variation of the coarser size detection limit (i.e. 400 to 1000 

nm) is less relevant in terms of comparing data, since the PNC in this size range accounts for a very low proportion 

of the total PNC. 

WP1 evaluated in detail all these differences and compiled PNC10-800 for most cases, but in a few of them it was 

PNC15-800 to PNC20-800. If multi-city studies are to be carried out, these are important parameters to consider. For 

comparability and meta-analyses, one approach could be to restrict the total size range to match the one that is 

covered in all the cities. That is, restricting the size range for the multi-city study to the common larger lower size 

cut and the lower larger size cut in all cities. 

On the other hand, for evaluating health effects of the nucleation mode PNC10-25 in this study, datasets are 

excluded if the lower detection size is larger than 13 nm. 

Moreover, UFP are known to show strong spatial heterogeneity (Puustinen et al. 2007), which may lead to exposure 

misclassification in epidemiological studies, particularly for the smallest particles, relying on a single monitoring 

station (which is often the case, as UFP are not a regulated pollutant and currently is only measured for research 

purposes). However, there are a number of studies reporting high temporal correlation of PNC across the city 

despite this known high spatial variability, which indicates that using data from a single station might be a proper 

approach in time series analysis (Cyrys et al. 2008; Marconi et al. 2007; Puustinen et al. 2007). 

3.4.9. Other strategies for multipollutant analysis 

3.4.9.1. Factor analysis/source apportionment 

Some studies use the component concentrations to estimate the daily concentrations coming from different 

sources (e.g., traffic, industry, natural sources, etc.). Factor analysis, positive matrix factorization or other 

techniques can be used for that (Amato et al. 2009). This has the advantage of having to estimate fewer parameters, 

as the number of sources is less than the number of constituents, and it may lead to more interpretable estimates, 

as results summarize all the effects of the constituents in one source. Moreover, focusing on the sources instead of 

in specific components facilitates the instauration and justification of policies for better air quality that target the 

most harmful sources.  

With this analysis, one still needs to consider whether to adjust for total PM or not. One difficulty of the analysis of 

sources is that they tend to be different in different cities. For example, an industry source in one city may have a 

completely different source profile than in another city, if the types of industry present in each city are very 

different. This makes it difficult to combine results from multiple cities (Basagana et al. 2015; Mostofsky et al. 2012). 

3.4.9.2. Clustering days 

One can use clustering techniques to cluster days, i.e. to group days, according to the mixture of exposures 

observed in that day. Then, one studies the risk for the health event in each of the groups of days. These techniques 

evaluate the effect of having a specific mixture of pollutants, i.e. it does not evaluate the health effects of specific 

components but that of the overall mixture. In some situations, this can provide more realistic estimates as, as 

mentioned above, it if very difficult to separate the effects of the air pollution mixture. Several studies have used 

this technique (Ljungman et al. 2015; Pearce et al. 2018; Zanobetti et al. 2014). For example, they found that days 

with low mass concentrations, but high proportion of ultrafine particles resulted in elevated risk for some health 

outcomes (Ljungman et al. 2015), or that days that were warm and  dry and with high levels of O3 and PM2.5 

conferred some risks of other health outcomes (Pearce et al. 2018). This kind of approach also makes it difficult to 

combine results from different cities, as the clusters obtained in the different cities can be very different. 

3.4.9.3. Hierarchical models 

Hierarchical models often impose a structure in the data, e.g. specifying that pollutants of the same family or with 

similar chemical or toxicological properties should have similar health effect estimates. This results in estimated 
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effects for each pollutant being shrunk towards the mean effect of the group, improving precision in estimation. 

Hierarchical models are often fitted with Bayesian techniques (Blangiardo et al. 2019), but non-Bayesian options 

have also been used (Suh et al. 2011). In some cases, such modelling can be quite complex, especially if one wants 

to include many features such as nonlinear or delayed effects, and it may require expertise in Bayesian statistics. 

3.4.9.4. Other methods and final remarks 

There are several other methods that have been suggested to estimate the effect of multiple pollutants. Here, we 

provide some references to reviews of such methods (Davalos et al. 2017; Oakes et al. 2014). Overall, analysts are 

encouraged to explore such methods and find the one that best fits their research question and data availability. 

However, as stressed above, disentangling the effects of multiple pollutants in observational studies is a complex 

problem, and all statistical methods are limited by the quality of information present in the data. Thus, it is 

recommended to do a complete analysis, starting by investigating the correlation between pollutants, following by 

fitting single pollutant models, then fitting two-pollutant models, and finally considering techniques for 

multipollutant models. Results from all these analyses should be analysed with caution, conducting several 

sensitivity analyses (e.g. trying to adjust for PM mass) and using available knowledge.  

 

4. Health impact assessment 

Health impact assessment is a technique that can be used to predict the potential health benefits and health 

impacts from a policy, program, activity or situation in a given population. In the case of short-term effects of air 

pollution, it could be used to assess, for example, how many deaths could be prevented if air pollution levels in a 

city did not exceed the limits recommended by WHO (or any other limit) any day of the year. Note that this 

technique can be used to illustrate the effects of air pollution in an area even when one does not have access to 

the time series of health data (e.g. the daily mortality series), or when the time series is too short to draw valid 

conclusions. This can be done provided that there is good evidence in the literature of the health effects of the 

particular pollutant for which one wants to do the study. In particular, one needs an estimation of the relative risk 

of the pollutant, ideally coming from a meta-analysis of many studies, so that the relative risk is estimated with 

good precision and can be trusted. For example, the HRAPIE project provided the best available exposure–response 

functions for health impact assessment of the effects of PM, O3, and NO2 (World Health Organization, Regional 

Office for Europe, 2013). They provided estimates for both short-term and long-term exposure associations with 

health. 

4.1. Data needs 

For the case of short-term associations, the health impact assessment calculates the number of cases (e.g. mortality 

or hospital admission cases) attributable to air pollution in the baseline scenario, and compares it to the attributable 

number of cases in a counterfactual scenario. The data needed to conduct the health impact assessment is the 

following: 

• Baseline exposure. This is usually the present or past exposure, and one can use a daily time series of the 

specific pollutant under investigation to represent current exposure. 

• Air pollution levels in the counterfactual scenario. The available time series can be modified to obtain that. For 

example, if the counterfactual scenario is one in which certain threshold is never exceeded, all days that exceed 

the threshold in the real series are replaced by the threshold. This way, the threshold is never exceeded in the 

modified series. Other types of scenarios could be envisioned, e.g. on in which the concentration of all days is 

reduced by 10%. 

• Size and profile demographics of the population exposed. This may just be the population (total number) living 

in the particular area under study. In some cases, the population by sex and age ranges can also be used. The 
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population can be considered to be the same in the current and counterfactual scenario, or it can be assumed 

to change. 

• Incidence rate of the health effect being studied. For example, the underlying mortality rate in the population, 

in deaths per thousand people. 

• The risk estimate from exposure-response functions relating air pollution to the health effect (e.g. mortality). 

This estimate comes from the epidemiological literature and ideally it should be an estimate based on the meta-

analysis of several studies that appropriately summarises the best available evidence for the association. There 

exist very good estimates of exposure-response functions for PM, NO2 or O3. For the case of nanoparticles or 

PM constituents, there is less evidence and the estimates available will be considered of less quality. In 2014, a 

WHO expert meeting concluded that it was premature to derive specific exposure-response functions for any 

PM component (World Health Organization, Regional Office for Europe, 2014). However, estimates are 

available, and HIA exercises could be done as long as the limitations of the data are acknowledged.  

 

4.2. Calculations 

The predicted number of attributable cases (attributable number, AN) for a certain air pollutant (Poll), assuming 

the association is linear, can be calculated as AN(Poll) = P∗B∗(1−1/RR(Poll)), where P is the exposed population, B 

is the baseline population incidence of the given health effect, RR(Poll) = exp(β*Poll), Poll are the levels of the 

pollutant and β is obtained from the exposure response functions. Then, one can do the calculations for the baseline 

and counterfactual scenario to obtain the difference in the number of cases. In the context of a time series study, 

one can do the calculations for every day in the series and sum the number of cases throughout the study period. 

The following references provide examples of such HIA calculations (Holland et al. 2005; Izquierdo et al. 2020). 

Uncertainty analysis is a key part of health impact assessment. One can use different estimates of the exposure 

response functions, and use the confidence intervals of the exposure-response function estimates in simulation 

procedures to incorporate the uncertainty in the final estimates. Uncertainties in the disease burden, the pollution 

exposure level, response to the pollution and the counterfactual level of air pollution should also be incorporated. 

More details on the implementation of HIA studies can be found in the following reference (Holland et al. 2005).  
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